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Abstract
We construct a canonical irreducible representation for the orthofermion
algebra of arbitrary order, and show that every representation decomposes
into irreducible representations that are isomorphic to either the canonical
representation or the trivial representation. We use these results to show that
every orthosupersymmetric system of orderp has a parasupersymmetry of order
p and a fractional supersymmetry of order p + 1.

PACS number: 11.30.Pb

1. Introduction

Orthofermions were originally introduced by Khare et al [1] in an attempt to obtain a
generalization of supersymmetry called orthosupersymmetry. Recently [2], it has been
realized that orthofermions may be used to construct parafermions of order 2, and that every
orthosupersymmetric system possesses topological symmetries [3]. In particular, given an
orthosupersymmetric system of order p, one can construct a fractional supersymmetric system
of order p + 1 [2]. The main ingredient leading to these observations is the algebra of
orthosupersymmetric quantum mechanics [1]:

[H,Qα] = 0 (1)

QαQ
†
β + δαβ

p∑
γ=1

Q†
γQγ = 2δαβH (2)

QαQβ = 0 (3)

whereQα are the generators of the orthosupersymmetry,α, β ∈ {1, 2, . . . , p} and δαβ stands for
the Kronecker delta function. The simplest quantum system possessing orthosupersymmetry
of order p is a system with bosonic and orthofermionic degrees of freedom. For this system
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the generators of orthosupersymmetry are given byQα = √
2a†cα where a is the annihilation

operator for a boson and cα are the annihilation operators for orthofermions of order p. They
are defined through the relations [1]

[a, a†] = 1 [a, cα] = [a, c†
α] = 0

cαc
†
β + δαβ

p∑
γ=1

c†
γ cγ = δαβ1

(4)

cαcβ = 0 (5)

where 1 stands for the identity operator. The study of orthosupersymmetry [1] relies on a matrix
representation of orthofermions of orderpwhere cα are represented by (p+1)×(p+1)matrices
with entries

[cα]ij = δi,1δj,α+1 ∀i, j ∈ {1, . . . , p + 1}. (6)

The purpose of this paper is to study the general representations of the orthofermion algebra,
i.e. equations (4) and (5), and to explore the implications of this study for ortho-, para- and
fractional supersymmetry of arbitrary order.

The organization of the paper is as follows. In section 2, we construct a canonical
irreducible representation for the orthofermion algebra. In section 3, we examine general
representations of the orthofermion algebra, and show that every representation decomposes
into the irreducible representations that are either isomorphic to the canonical representation
or the trivial representation. In section 4, we construct the ladder operators for the canonical
representation and derive some of their basic properties. In section 5, we use the results of
the preceding sections to show that every orthosupersymmetric system of order p possesses a
parasupersymmetry of order p and a fractional supersymmetry of order p + 1. In sections 6,
we summarize our results and present our concluding remarks.

2. The canonical irreducible representation of the orthofermion algebra

We begin our analysis of the orthofermion algebra, i.e. equations (4) and (5), by introducing

� := 1 −
p∑
α=1

c†
αcα. (7)

This allows us to write equation (4) in the form

cαc
†
β = δαβ�. (8)

It is not difficult to show that � is a Hermitian projection operator:

�2 = � = �†. (9)

This follows from equations (5), (7) and (8). Furthermore, for all α ∈ {1, 2, . . . , p},
�cα = cα c†

α� = c†
α (10)

cα� = 0 �c†
α = 0. (11)

Next, let A denote the (complex associative ∗) algebra generated by 2p generators: cα, c†
α

withα ∈ {1, 2, . . . , p}, and subject to relations (5), (7) and (8)1. Then in view of these relations
and equations (10) and (11), elements of A have the general form

x = λ� +
p∑
α=1

(ναcα + µαc
†
α) +

p∑
α,β=1

σαβ c
†
αcβ (12)

1 Clearly, the ∗ operation is given by †.
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where λ, να, µα and σαβ are complex numbers. As seen from equation (12), A is a (p + 1)2-
dimensional complex vector space. We can use this vector space as a representation space for
orthofermion algebra. However, as we shall see in section 4 this would lead to a reducible
representation. Therefore, we will restrict to a subrepresentation.

Let A0 ⊂ A be the span of � and c†
α and

x0 := λ� +
p∑
α=1

µαc
†
α

be an arbitrary element of A0. Then, in view of equation (8) and (10), for all α ∈ {1, 2, . . . , p},
cαx0 = µα� c†

αx0 = λc†
α. (13)

These equations suggest that A0 is the representation space for a Fock space representation of
orthofermions. Following the standard notation, we set

|0〉 := � and ∀α ∈ {1, 2, . . . , p} |α〉 := c†
α. (14)

This yields

∀α ∈ {1, 2, . . . , p} cα|0〉 = 0 and |α〉 = c†
α|0〉. (15)

Furthermore, using equation (11) we have

�|0〉 = |0〉 and ∀α ∈ {1, 2, . . . , p} �|α〉 = 0. (16)

Therefore, � is the projection onto the ‘vacuum’ state vector |0〉.
As a vector space A0 is isomorphic to C

p+1. The vectors |n〉 with n ∈ {0, 1, . . . , p} form
a basis for A0. In this basis, |n〉 may be identified with column vectors whose kth component
is given by δnk and the operators cα are represented by (p + 1)× (p + 1) matrices with entries

[cα]ij = δi,1δj,α+1. (17)

This is precisely the matrix representation (6) of [1]. Note that unlike in [1], here we construct
the representation space: A0. Since, we have obtained the action of cα and c†

α on the basis
vectors |n〉, we can represent all the elements of A by linear operators (endomorphisms)
mapping A0 into itself, i.e. we have a representation ρ0 : A → End(A0) of the algebra A. Here
‘End’ abbreviates the ‘space of endomorphisms of’, and by a representation ρ : A → End(V )
in a complex vector space V we mean a linear map satisfying

ρ(x1x2) = ρ(x1)ρ(x2) ∀x1, x2 ∈ A. (18)

We shall also postulate

∀x ∈ A ρ(x†) = ρ(x)† (19)

if V is endowed with an inner product.
Note that the representation ρ0 is an irreducible representation. This may be easily verified

by inspecting the matrices (17).

3. Representation theory of the orthofermion algebra

Let V be an arbitrary complex vector space, ρ : A → End(V ) be a representation of A, and
V0 be the subspace of V defined by

V0 := Im (ρ(�)) := {ρ(�)v | v ∈ V } .
Lemma 1. If V0 = {0}, then ρ is a trivial representation, i.e. for all x ∈ A and v ∈ V ,
ρ(x)v = 0.
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Proof. In view of equation (18), it is sufficient to prove that ρ(cα)v = ρ(c†
α)v = 0. Because

V0 = {0}, for all u ∈ V , ρ(�)u = 0. But then according to equations (18), (10) and (11),

ρ(cα)v = ρ(� cα)v = ρ(�)[ρ(cα)v] = 0 ρ(c†
α)v = ρ(c†

α�)v = ρ(c†
α)[ρ(�)v] = 0.

�
Now, suppose that ρ is not a trivial representation. Then V0 is a nontrivial subspace of V . Let
{ei} be a basis of V0 and Vi be the subspaces of V defined by

Vi := Span
(
{ei}

⋃
{ρ(c†

α)ei}α∈{1,2,·s,p}
)
.

Then we can prove the following lemma.

Lemma 2. For all x ∈ A, ρ(x) maps Vi into Vi .
Proof. It suffices to show that for all α ∈ {1, 2, . . . , p}, ρ(cα) and ρ(c†

α) map Vi into Vi . Let
v ∈ Vi , then there are complex numbers µα and λ such that v = ∑p

β=1 µβρ(c
†
β)ei + λei . In

view of equations (18), (11), (9), and ei� ∈ V�,

ρ(cα)v =
p∑
α=1

µβρ(cαc
†
β)ei + λρ(cα)ei = µαei ∈ Vi

ρ(c†
α)v =

p∑
α=1

µβρ(c
†
αc

†
β)ei + λρ(c†

α)ei = λρ(c†
α)ei ∈ Vi.

�
A direct implication of lemma 2 is that for each basis vector ei of V0 the restriction

ρi = ρ|Vi : A → End(Vi)

of ρ provides a representation of the algebra A.
Furthermore, introducing

|0〉i := ei and |α〉i := ρi(c
†
α)|0〉i ∀α ∈ {1, 2, . . . , p}

we can easily show that |n〉i , with n ∈ {0, 1, . . . , p}, are basis vectors for Vi and that in this
basis the operators ρi(cα) are represented by matrices whose entries are given by the right-hand
side of equation (6). Therefore, the representations ρi are equivalent to the representation ρ0.
In particular, they are irreducible representations.

Next, consider the case where the dimension of V0 is greater than one.

Lemma 3. Let ei1 and ei2 be distinct basis vectors of V0. Then Vi1 ∩ Vi2 = {0}.
Proof. Suppose v ∈ Vi1 ∩ Vi2 . Then there are complex numbers µα,µ′

α, λ and λ′ such that

v =
p∑
α=1

µαρ(c
†
α)ei1 + λei1 =

p∑
α=1

µ′
αρ(c

†
α)ei2 + λ′ei2 . (20)

Applying ρ(�) to both sides of the second equation in (20) and using (18), (11), (9), and
ei� ∈ V�, we find λei1 = λ′ei2 , which implies λ = λ′ = 0. Similarly, applying ρ(cβ) to
both sides of (20) for an arbitrary β ∈ {1, 2 . . . , p}, we have µβei1 = µ′

βei2 which yields
µβ = µ′

β = 0. Hence, v = 0. �
Now, we are in a position to address the issue of the decomposition of an arbitrary

representation ρ into irreducible representations. The algebra A does not contain a unit 1. In
the following we shall extend A by adding 1 as a generator satisfying: ∀x ∈ A, 1x = x1 = x.
Inclusion of 1 allows us to use equation (7) in the representations of A. Clearly, we have
∀x ∈ A, ρ(1)ρ(x) = ρ(x)ρ(1) = ρ(x). For the representations ρi , we have ρi(1) = Ii ,
where Ii is the identity operator acting on Vi . This follows from the equivalence of ρi and ρ0.
Note also that for a trivial representation, we have ρ(1) = 0.
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Lemma 4. Suppose that ρ(1) = I , where I denotes the identity operator acting on V , and let
V∗ := ⊕iVi . Then V = V∗.

Proof. Let w ∈ V − V∗, in particular w �= 0 and e := ρ(�)w ∈ V0 ⊂ V∗, so that e ∈ V∗ and
e �= w. Now, using equation (7), we have

p∑
α=1

ρ(c†
α)ρ(cα)w = ρ(1)w − e = w − e /∈ V∗.

This in turn implies that ρ(cα)w /∈ V∗. Also in view of equation (10), we have ρ(�)ρ(cα)w =
ρ(cα)w /∈ V∗. This contradicts ρ(�)(ρ(cα)w) ∈ V0 ⊂ V∗. Therefore, such a w does not exist
and V = V∗. �
Next consider the case where V is endowed with an inner product 〈 | 〉. Then we have the
following results.

Lemma 5. Let ei1 and ei2 be orthogonal basis vectors of V0. Then Vi1 and Vi2 are orthogonal
subspaces of V .

Proof. This statement follows from the identities

〈ρ(c†
α)ei1 |ρ(c†

β)ei2〉 = 〈ei1 |ρ(cαc†
β)ei2〉 = δαβ〈ei1 |ρ(�)|ei2〉 = δαβ〈ei1 |ei2〉 = 0

〈ei1 |ρ(c†
α)ei2〉 = 〈ρ(cα)ei1 |ei2〉 = 0

where we have made use of equation (19) and ρ(cα)ei1 = 0. �
This lemma implies that V∗ is actually an orthogonal direct sum of the subspaces Vi .

Lemma 6. Let V c∗ := {w ∈ V |∀v ∈ V∗, 〈w|v〉 = 0} be the orthogonal complement of V∗.
Then V c∗ is the representation space for a trivial representation of A.

Proof. Let w ∈ V c∗ and e := ρ(�)w ∈ V0 ⊂ V∗. Then clearly, 〈w|e〉 = 0 and

〈e|e〉 = 〈ρ(�)w|ρ(�)w〉 = 〈w|ρ(�)†ρ(�)w〉 = 〈w|ρ(�)w〉 = 〈w|e〉 = 0. (21)

Here, we have made use of equations (9) and (19). Equation (21) implies ρ(�)w = e = 0.
Hence ρ(�)(V c∗ ) = {0}. Now, computing

〈ρ(c†
α)w|ρ(c†

α)w〉 = 〈w|ρ(cα)ρ(c†
α)w〉 = 〈w|ρ(�)w〉 = 0

we find that

ρ(c†
α)w = 0. (22)

Next, using equation (7), we have[
ρ(1)−

p∑
α=1

ρ(c†
α)ρ(cα)

]
w = ρ(�)w = 0. (23)

Furthermore, let us express ρ(cα)w = wα +wcα wherewα ∈ V∗ andwcα ∈ V c∗ . Then according
to the above argument ρ(c†

α)w
c
α = 0. This together with equations (22) and (23) imply

〈ρ(1)w|ρ(1)w〉 = 〈w|ρ(1†)ρ(1)w〉 = 〈w|ρ(1)w〉

=
p∑
α=1

〈w|ρ(c†
α)ρ(cα)w〉 =

p∑
α=1

〈w|ρ(c†
α)wα〉 = 0. (24)

The last equality follows from the fact that since wα ∈ V∗, ρ(c†
α)wα ∈ V∗. Equation (24)

implies ρ(1)w = 0. Therefore, for all x ∈ A,

ρ(x)w = ρ(x1)w = ρ(x)ρ(1)w = 0

and V c∗ yields a trivial representation of A. �
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In summary, up to equivalence, the orthofermion algebra of orderp has a unique nontrivial
(p + 1)-dimensional irreducible representation ρ0, and every representation decomposes into
irreducible representations that are equivalent to either the trivial representation or ρ0. In
particular, the orthosupersymmetry algebra is in a sense the unique generalization of the
supersymmetry algebra describing Bose-orthoFermi symmetry.

4. The Ladder operators of the canonical representation

Consider the canonical irreducible representation ρ0 of section 2 and let

L := c1 +
p∑
α=2

c
†
α−1cα. (25)

Then, in view of equations (8), (14)–(16), we have

L|n〉 =
{

0 for n = 0

|n− 1〉 for n ∈ {1, 2, . . . , p}

L†|n〉 =
{

|n + 1〉 for n ∈ {0, 1, . . . , p − 1}
0 for n = p

.

(26)

These equations show that L and L† are the ladder operators for the canonical representation
of the orthofermion algebra.

The ladder operators L and L† have certain interesting properties. For example, we can
use equations (25), (8), (10) and (11), to compute

L†L = 1 −� (27)

LL† = 1 − c†
pcp (28)

Lk =



ck +

p−k∑
α=1

c†
αcα+k for k ∈ {1, 2, . . . , p − 1}

cp for k = p

0 for k ∈ {p + 1, p + 2, . . .}

(29)

LpL† = cp−1 L†Lp = Lp−1 − cp−1. (30)

In view of these equations and (10) and (11), we also obtain

Lk� = 0 �Lk = ck (31)

Lp−kL†Lk = Lp−1 (32)

where k ∈ {1, 2, . . . , p}.
Equations (29)–(32) imply

Lp+1 = 0 (33)
p∑
k=0

Lp−kL†Lk = p Lp−1. (34)

These equations are reminiscent of the defining equations for the parasupersymmetry of order
p, [4]. In section 5, we shall use these equations to establish that every orthosupersymmetric
system of order p has a parasupersymmetry of order p.

Next, let

F := L + c†
p. (35)
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Then, in view of equations (14), (15) and (26), we have

F |n〉 =
{

|n− 1〉 for n ∈ {1, . . . , p}
|p〉 for n = 0

F †|n〉 =
{

|n + 1〉 for n ∈ {0, 1, . . . , p − 1}
|0〉 for n = p.

(36)

In particular,

Fp+1 = 1. (37)

In the following section, we shall make use of this identity to show that every
orthosupersymmetric system of order p has a fractional supersymmetry of order p.

5. An orthosupersymmetric realization of parasupersymmetry and fractional
supersymmetry

In [2], the algebra (1)–(3) is used to show that the operator

Q̃ := Q
†
1 +

p∑
α=2

Q†
αQα−1 +Qp

satisfies Q̃p+1 = (2H)p. Therefore, Q̃ is the generator of a fractional supersymmetry for the
HamiltonianK := (2H)p. In this section, we shall demonstrate that any orthosupersymmetric
system has a fractional supersymmetry and a parasupersymmetry of order p + 1.

First, we recall that the energy spectrum of an orthosupersymmetric Hamiltonian H is
non-negative. This follows from equation (2). Setting α = β in this equation, we have for any
state vector |ψ〉,

〈ψ |H |ψ〉 = ||Q†
α|ψ〉||2 +

p∑
γ=1

||Qγ |ψ〉||2 � 0. (38)

Next, Let E denote an eigenvalue of H and H(E) denote the corresponding eigenspace.
Because of equation (1) the restriction Q(E)

1 := Q|H(E) is an operator mapping H(E) into
H(E). Restricting equations (2) and (3) to H(E), we find

Q(E)
α Q

(E)†
β + δαβ

p∑
γ=1

Q(E)†
γ Q(E)

γ = 2δαβE I
(E) (39)

Q(E)
α Q

(E)
β = 0 (40)

where I (E) denotes the identity operator on H(E).
Now, if E = 0, then according to equation (38), we have

Q(0)
α = Q(0)†

α = 0. (41)

Next, introduce

c(E)α :=
{

0 for E = 0
(2E)−1/2Q(E)

α for E > 0.
(42)

Then in terms of c(E)α , equations (39) and (40), take the form

c(E)α c
(E)†

β + δαβ
p∑
γ=1

c(E)†γ c(E)γ =
{

0 for E = 0
2δαβI

(E) for E > 0
(43)

c(E)α c
(E)
β = 0. (44)
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Comparing these equations with equations (4) and (5), we see that c(E)α provide a representation
ρ(E) of the orthofermion algebra,

c(E)α = ρ(E)(cα). (45)

Clearly, for E = 0, this representation is the direct sum of a number n0 = dim(H(0)) of
trivial representations. Moreover, in view of equation (43), for E > 0, the identity operator
1 is represented by I (E). Therefore, according to lemmas 4 and 5, the representation ρ(E)

decomposes into a number nE of irreducible representations ρ(E)i which are equivalent to the
canonical representation ρ0. Denoting the corresponding representation spaces by H(E)

i , we
can express H(E) as an orthogonal direct sum of H(E)

i ,

H(E) = ⊕nE
i=1H(E)

i .

A direct implication of the fact that c(E)α provide a representation ρ(E) which in turn
decomposes into the irreducible representations ρ(E)i is that the positive energy eigenvalues E
are ni(p+1)-fold degenerate. This confirms the results of [2] on the topological symmetries [3]
of orthosupersymmetric systems.

Next, let L(E) := ρ(E)(L) and F (E) := ρ(E)(F ), where L and F are the operators
introduced in equations (25) and (35), respectively. In view of the above mentioned
decomposition of ρ(E) into ρ(E)i , the equivalence of the latter with ρ0 and equations (33), (34)
and (37), we have

(L(E))p+1 = 0
p∑

K=0

(L(E))p−kL(E)†(L(E))k = p (L(E))p−1 (46)

(F (E))p+1 = 1. (47)

Now, consider the operators Q and Q defined through their restrictions Q(E) and Q(E) on the
eigenspaces H(E) according to

Q(E) :=
{

0 for E = 0√
2E L(E) for E > 0.

(48)

Q(E) :=
{

0 for E = 0
E1/(p+1)F (E) for E > 0.

(49)

Then, in view of equations (46) and (47), we have

Qp+1 = 0
p∑
k=0

Qp−kQ†Qk = pQp−1H (50)

Qp+1 = H. (51)

Furthermore, by construction,

[Q,H ] = [Q, H ] = 0.

These equations indicate that the system has a parasupersymmetry [4] of order p generated by
Q and a fractional supersymmetry [5] of order p + 1 generated by Q.

Note also that the parasupersymmetry and fractional supersymmetry generators can be
expressed in terms of the orthosupersymmetry generators Qα according to

Q = Q1 + (2H)−1/2
p∑
α=2

Q
†
α−1Qα

Q = 2−1/2H
− p−1
p+1 Q1 + 2−1H

− p

p+1

p∑
α=2

Q
†
α−1Qα + 2−1/2H

− p−1
p+1 Q†

p.

Here, for all a ∈ R
+,Ha := ∑

E E
a)E and)E is the projection operator onto the eigenspace

H(E).
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6. Summary and conclusion

In this paper, we addressed the representation theory of orthofermions. We constructed
a canonical (p + 1)-dimensional irreducible representation for the orthofermion algebra of
order p, and showed that every representation of this algebra decomposes into copies of the
trivial and the canonical representation. The canonical representation which is a Fock space
representation admits ladder operators. We obtained these ladder operators and their properties
to establish parasupersymmetry and fractional supersymmetry of general orthosupersymmetric
Hamiltonians. Our results may be viewed as a novel realization of parasupersymmetry and
fractional supersymmetry of arbitrary order. In a sense, it yields an alternative statistical
interpretation of these symmetries.

As argued in [2] and shown in this paper, orthosupersymmetric systems satisfy the defining
properties of certain topological symmetries [3]. The latter are a class of generalizations
of supersymmetry that involve topological invariants similar to the Witten index. A proper
understanding of these invariants requires the study of concrete toy models displaying these
symmetries. The orthosupersymmetric systems provide a class of these models. Our analysis of
orthofermion algebra leads to a clear picture of the general properties of orthosupersymmetry
in one dimension. A logical extension of our results would be to treat orthofermions and
orthosupersymmetry in higher dimensions. This might also shed some light on fractional
supersymmetry in higher dimensions.
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